
LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 1

Lab 2 – Software Requirements Specification (SRS)

John Hicks

Old Dominion University

CS411W

Dr. Sumaya Sanober

Mar 28, 2025

Version 2

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 2

Table of Contents

1 Introduction .. 4

1.1 Purpose .. 4

1.2 Scope ... 4

1.3 Definitions, Acronyms, and Abbreviations ... 5

1.4 References ... 7

1.5 Overview ... 8

2 Overall description ... 8

2.1 Product Perspective ... 8

2.2 Product Functions .. 13

2.3 User Characteristics... 14

2.4 Constraints ... 15

2.5 Assumptions and Dependencies .. 15

List of Figures

Figure 1 Two use-cases showing CueCode's API payload generation concept. 9

Figure 2 The major components of the CueCode Developer Portal and Configuration Algorithm,

showing component interactions for authentication (1) and the Configuration Algorithm (2) 10

Figure 3 CueCode runtime API authentication (1) and API payload generation (2)11

Figure 4 All major functional components of the CueCode system ... 12

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 3

List of Tables

Table 1 Real-world product (RWP) vs. Prototype features ... 14

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 4

1 Introduction

1.1 Purpose

This document provides developers with a technically oriented and comprehensive

description of CueCode’s requirements. It is a continuation of the CueCode product description

for CS411W [1], which described the CueCode product from a non-technical perspective. This

document will address the requirements for the CueCode prototype, in contrast to the real-world

product described by Team Red in CS410.

1.2 Scope

The prototype version of CueCode will be developed to begin development of a product

that uses and extends a particular combination of large language model (LLM) and cosine

similarity search technology described by Zafin [2]. In addition to building product-oriented

features to Zafin’s microservice experiment, CueCode further develops Zafin’s approach to

generating API payloads by including a payload ordering algorithm to ensure data dependencies

are not overlooked when the system determines the order in which its generated API requests

should be executed by client systems.

 The constrained feature set of the CueCode prototype enables timely development of the

system’s core functionality.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 5

1.3 Definitions, Acronyms, and Abbreviations

API Payload (informal): Information that is sent together with an API request or

response. This data, which can be organized in JSON or XML forms, usually includes the details

needed by the client to comprehend the answer or by the server to carry out an action.

CueCode Developer Portal: A web-based platform that allows easy API creation with

NLP-generated requests and gives developers access to CueCode's tools, API configuration, and

integration workflow management.

HTTP Header: Additional metadata, such as the content type, authentication information,

or caching instructions, are transmitted with HTTP requests and answers. Headers give context,

which improves communication.

HTTP (Hypertext Transfer Protocol): The protocol that specifies the format and

transmission of messages between web clients and servers. The type of request is determined by

the HTTP methods (GET, POST, etc.).

Hypermedia: inter-linked content on the Internet. In the context of REST APIs,

hypermedia allows REST APIs to be more or less RESTful, as defined by Roy Fielding and

following authors [3].

OpenAPI specification: a description of an API’s available resources, which follows one

of the versions of the OpenAPI specification format [4].

Representational State Transfer (REST): A set of design guidelines for networked apps

that use stateless, cacheable, and consistent HTTP processes to facilitate interaction. Through the

use of common HTTP techniques, REST allows clients to communicate with servers by

modifying resources that match an expected structure [5].

RWP: Real-world product, as contrasted with the prototype.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 6

URL (Uniform Resource Locator): A web address that indicates where a resource is

located on the internet. Protocol (such as HTTP/HTTPS), domain, and resource path are all

included in URLs. They are necessary to access and consult internet resources.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 7

1.4 References

[1] John Hicks, “CS411W Lab 1: CueCode Product Description,” Feb. 28, 2025.

[2] E. Zafin, “Bridging the Gap: Exploring use of Natural Language to interact with Complex

Systems,” Engineering at Zafin. Accessed: Sep. 10, 2024. [Online]. Available:

https://medium.com/engineering-zafin/bridging-the-gap-exploring-using-natural-language-

to-interact-with-complex-systems-11c1b056cc19

[3] “What Is Hypermedia?,” smartbear.com. Accessed: Nov. 08, 2024. [Online]. Available:

https://smartbear.com/learn/api-design/what-is-hypermedia/

[4] “OpenAPI Specification - Version 3.1.0 | Swagger.” Accessed: Sep. 10, 2024. [Online].

Available: https://swagger.io/specification/

[5] “What is a REST API? | IBM.” Accessed: Mar. 09, 2025. [Online]. Available:

https://www.ibm.com/think/topics/rest-apis

[6] “Against LLM maximalism · Explosion.” Accessed: Sep. 10, 2024. [Online]. Available:

https://explosion.ai/blog/explosion.ai

[7] Y. Su, A. H. Awadallah, M. Khabsa, P. Pantel, M. Gamon, and M. Encarnacion, “Building

Natural Language Interfaces to Web APIs,” in Proceedings of the 2017 ACM on Conference

on Information and Knowledge Management, Singapore Singapore: ACM, Nov. 2017, pp.

177–186. doi: 10.1145/3132847.3133009.

[8] “Dramatiq: background tasks — Dramatiq 1.17.1 documentation.” Accessed: Mar. 09, 2025.

[Online]. Available: https://dramatiq.io/

[9] “Evaluation | Genkit,” Firebase. Accessed: Sep. 14, 2024. [Online]. Available:

https://firebase.google.com/docs/genkit/evaluation

[10] B. Lorica, “Expanding AI Horizons: The Rise of Function Calling in LLMs,” Gradient

Flow. Accessed: Oct. 24, 2024. [Online]. Available: https://gradientflow.com/expanding-ai-

horizons-the-rise-of-function-calling-in-llms/

[11] “Function Calling.” Accessed: Sep. 14, 2024. [Online]. Available:

https://platform.openai.com/docs/guides/function-calling

[12] microsoft/prompt-engine. Microsoft, 2024. Accessed: Oct. 24, 2024. [Online]. Available:

https://github.com/microsoft/prompt-engine

[13] Mark Needham, Returning consistent/valid JSON with OpenAI/GPT, (Jul. 26, 2023).

Accessed: Oct. 24, 2024. [Online]. Available:

https://www.youtube.com/watch?v=lJJkBaO15Po

[14] “Tool/function calling | LangChain.” Accessed: Sep. 14, 2024. [Online]. Available:

https://python.langchain.com/v0.1/docs/modules/model_io/chat/function_calling/

[15] R. Merritt, “What Is Retrieval-Augmented Generation aka RAG?,” NVIDIA Blog.

Accessed: Sep. 25, 2024. [Online]. Available: https://blogs.nvidia.com/blog/what-is-

retrieval-augmented-generation/

[16] “spaCy · Industrial-strength Natural Language Processing in Python.” Accessed: Sep. 26,

2024. [Online]. Available: https://spacy.io/

[17] openapi-spec-validator: OpenAPI 2.0 (aka Swagger) and OpenAPI 3 spec validator.

Accessed: Mar. 09, 2025. [OS Independent]. Available: https://github.com/python-

openapi/openapi-spec-validator

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 8

1.5 Overview

This document covers first an overall description of the CueCode product and system, then it

specifies specific requirements, separated by their relevance to the Runtime and Configuration

algorithms described in section 2.1 below. Following section 2.1 is discussion of the product

functions, which describe the prototype’s functionality contrasted with the real-world product’s.

Section 2.3, “User Characteristics”, describes CueCode’s users and their roles in the system. The

CueCode prototype’s constraints are described in Section 2.4. Section 2.5 outlines the prototype

project’s assumptions and dependencies.

2 Overall description

2.1 Product Perspective

CueCode will offer a complete framework for application developers to integrate with a

service for translating natural language to REST API payloads while giving calling code the

opportunity to act on the data before issuing API requests.

CueCode will translate natural language in text format into a series of correctly ordered

REST API payloads, which a client application can then issue to the target API after further

processing and/or human review of the API call suggestions.

The customer’s calling code can process payloads using further business rules or provide

users the opportunity to review the payloads before they are sent to the target API. This approach

reduces the risk of generating API issuing API requests whose data is generated (inferred) by a

system, a requirement becoming more common in as chatbots and other Large Language Model

(LLM) tools make natural language interfaces with software more commonly requested [2], [6],

[7]. Both human-review and further processing use-cases are illustrated in Figure 1 below.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 9

Figure 1 Two use-cases showing CueCode's API payload generation concept.

The CueCode Developer Portal is a concept that features prominently in the real-world

product (RWP). For the prototype, the Developer Portal exists only to receive an OpenAPI

specification and start the CueCode Configuration algorithm, which prepares CueCode to

generate API payloads at runtime for a target API described in the OpenAPI specification. Figure

2 below shows the major components of the Developer Portal and how they relate to the

Configuration algorithm.

[This space intentionally left blank.]

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 10

Figure 2 The major components of the CueCode Developer Portal and Configuration Algorithm, showing

component interactions for authentication (1) and the Configuration Algorithm (2)

The CueCode application is a Python application that is divided into five modules:

1. Common

2. Web framework

3. Configuration algorithm

4. Runtime algorithm

5. Worker process integration code, called Actors [8]

The Python application is stateless - storing all state in either Redis or Postgres - so

multiple instances of the CueCode server can be run at one time and in one of two modes.

CueCode server will run in Web server mode and worker mode, depending on how it is

invoked. In Figure 2 above, the “Module – CueCode config-time algorithms” would operate in

worker mode. Worker mode is enabled by use of the Dramatiq framework [8]. The runtime

algorithm operates in Web server mode.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 11

Developers can integrate their applications with CueCode by using the CueCode client

library for their programming language of choice.

At runtime, the developer’s application can make a request to the CueCode service (itself

running over an HTTP Web API). The CueCode service will reply with the generated REST API

payload(s) corresponding to the natural language text input given. CueCode will provide client

libraries to integrate with the runtime HTTP API and ensure API requests are sent in the correct

order to ensure the data dependencies internal to the generated response are met. In the RWP, the

CueCode system would also be able to account for data dependencies within the target system,

not just within its response.

Figure 3 CueCode runtime API authentication (1) and API payload generation (2)

With both Configuration and Runtime major components included, the CueCode system

can be represented as the major functional components diagram in Figure 4 below.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 12

Figure 4 All major functional components of the CueCode system

CueCode has first-class support for humans and business rules in the loop of payload

generation [6], as compared with other approaches to the problem [2], [6], [7], [9], [10], [11],

[12], [13], [14], [15]. This will allow developers to begin using AI in a risk-aware manner in

comparison with competing approaches to this problem, since calling code can process payloads

using further business rules or provide users the opportunity to review the payloads before they

are sent to the target API.

[This space intentionally left blank.]

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 13

2.2 Product Functions

The CueCode prototype will include the following features, compared to the real-world

product (RWP).

CueCode’s prototype will translate natural language text into Web API requests against a

configured OpenAPI specification. CueCode’s prototype will not consult the API against which

the OpenAPI specification is defined, which would provide an enormous benefit in identifying

data objects by name within the natural language. This feature is simply too complex to

implement in the time allotted for prototyping. As indicated in table Table 1 below, the “Map

natural language to customer’s data entities via search or API call” feature would be available in

the RWP.

Category Feature
Real-world

product
Prototype

Portal
Interactive Login / Authentication ✔ ✔

Account sign-up / deletion ✔

Config

REST API definition management

✔ ✔

Upload OpenAPI specifications

REST API configuration wizard

Web-based

Wizard and/or

yaml file

Only yaml

file

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 14

Allow only a subset of valid OpenAPI

specs be used
✔ ✔

Runtime

Process natural language and turn it into

REST API payloads
✔ ✔

Map natural language to customer’s data

entities via search or API call
✔

Client libraries
Integrate application with CueCode’s

NLP API
✔ ✔

NLP monitoring
Trace, debug, and report on translation

requests in CueCode Web UI
✔

Marketplace
Share CueCode API configurations with

other users
✔

Table 1 Real-world product (RWP) vs. Prototype features

2.3 User Characteristics

CueCode’s first customers are developers, but CueCode will power user experiences for

CueCode’s the customer’s end users, requiring as much accuracy and as close to “natural” ability

to understand human intent within language as possible.

CueCode developer users will upload OpenAPI specifications to the system in preparation

for runtime API payload generation. CueCode developers also integrate their existing systems

with CueCode using the CueCode client code libraries, requiring a streamlined user interface for

both API upload via Web browser and a helpful software interface with the CueCode client

library.

The prototype will also support the end users of each application targeted by CueCode for

payload generation. Operation of the CueCode server will be transparent to end users, and it will

not allow them any access to changing the OpenAPI specification.

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 15

2.4 Constraints

The CueCode Python server may not use GPU hardware for the prototype design, due to

ODU infrastructure constraints for a project of this scope.

The CueCode server prototype may not contact the target API server for data at any time,

as it might in the RWP. For example, in the RWP, the CueCode server might need to map a

person’s name to their customer ID when the person has been referenced in the natural language

text.

2.5 Assumptions and Dependencies

The prototype design will not cover several basic scenarios that natural-language-to-API

content conversion would require. Already noted is that the CueCode server will not be able to

make the mapping from customer name to a customer ID, a scenario very likely needed to

convert a natural language description of a customer to a REST API request.

Other dependencies are listed below:

• Languages & Frameworks

o HTML, CSS, JavaScript – Frontend & UI/UX

o Python – Backend logic & integrations

o Bootstrap 5 – Responsive design

o Flask & Jinja – Backend & templating engine

• Platform & IDE

o Docker – Consistent environments

o Visual Studio Code (VS Code) – Preferred IDE

o Linux & Windows (WSL, Docker) – Dev environment

• API & Components

LAB 2 – CUECODE SOFTWARE REQUIREMENTS SPECIFICATION (SRS) 16

o OpenAI Client

▪ LLM content integration and tool call requests

o Swagger CodeGen – API client library generation

o Spacy.io – NLP processing [16]

o OpenAPI Spec Validator [17] – API spec validation

